
Program
Coupling and
Parallel Data

Transfer Using
PAWS

Sue Mniszewski, CCS-3
Pat Fasel, CCS-3

Craig Rasmussen, CCS-1

http://www.acl.lanl.gov/paws

2

Primary Goal of PAWS

● Provide the ability to share data between
two separate, parallel applications, using
the maximum bandwidth available

3

Challenges

● Coupling of parallel applications
● Avoid serialization
● Provide several synchronization strategies
● Connect parallel applications with unequal

numbers of processes
● Be extensible to new, user-defined parallel

distribution strategies

4

PAWS Design Goals

● Rewrite of PAWS 1
● Same general philosophy
● Using Cheetah/MPI run-time
● C++, C, and Fortran APIs
● Separation of layout and data (Ports & Views)
● Still single-threaded
● Channel abstraction
● Action caching (no barriers!)

5

PAWS Port Concept

● Separates layout from data
● Has a shape, but no data type
● Ports are connected, not data
● Allows multiple datas to use a single port
● Scalar ports for int, float, double, string
● View ports for rectilinear parallel data

6

Sample PAWS Environment

Application Visualization

PAWS
Controller

Parallel Transfer

7

PAWS Controller

● Database with registered applications
● Database with registered ports
● Initialize connection between ports

PAWS Controller
Application Database

Port Database

8

PAWS Application

● Must be told where to find Controller
● Use PAWS API to:

■ Register app and ports with Controller
■ Query Controller databases
■ Make connections
■ Send/Receive data
■ Disconnect ports or app from Controller

9

Running Applications

PAWS
Controller

App1
App2

PAWS Launcher/Batch (bsub) mpirun

Cheetah/MPI Groups Script

10

PAWS Networks

● PAWS Launcher/Controller accepts a
script to start apps and connect ports

Controller with registered
apps and ports

Controller script
connectPawsPorts ta1::A ta2::B1
connectPawsPorts ta2::B2 ta3::C
paws go ta1 ta2 ta3

Port A

Port C

Port B1

Port B2

11

Parallel Redistribution

● Each application can partition data
differently
■ Different numbers of processes
■ Different parallel layouts

12PAWS Data Model for
Rectilinear Data

● Parallel data objects in PAWS have two parts:
■ A global domain G, and a list of subdomains { Di }

■ Allocated blocks of memory, and mappings (known as
views) from memory to the { Di } subdomains

● G and { Di } are all that is needed to compute a
message schedule

● Views and allocated memory locations can
change

D1 D2 D3 G

13Example of G and { Di } in
PAWS

D1 D2

D3

G

14

PAWS Data Model: Views

● Views describe how data is mapped from
user storage to the subdomain blocks:

V1

V2

D2

D1
User’s
allocated
storage PAWS

Data
Model

15PAWS Data Model: Types of
Views

● Ways that we can specify the view domain Vi:
■ Strided “normal” D-dimensional domain, zero-based

– 1D example: Vi = {0, Asize-1, 1} means all of Ai.
■ Indirection list: list of M indirection points, each a D-

dimensional zero-based index into Ai domain. (future)
– 1D example: Vi = { {3,4}, {8,1}, {4,4} } is a 3-element list.

■ Function view: generate the data from a user-
provided function (or functor), instead of copying from
memory. (future)

■ The user could implement his/her own type of view.
This will be the user-extensibility method in PAWS.

16PAWS Data: Row- or
Column-major

● Organization of data in memory (row- or column-
major) is a characteristic of the data storage, not
the data model.

● Data model always stores sizes in same format.
Dimension information is listed left-to-right, first
dimension to last.

● Only use row- or column-major info to calculate
final location in memory during transfers.

● So, R- or C-major is a characteristic of a view.
Specify it when you specify a view.

17

Registering a Port

● Information specified when you register
ports from the user’s program:

■ Initial data model info G and { Di } (data
model)

■ Input or Output
■ Port type, scalar or distributed

18

Connecting Ports

● What info does both sides of a connection
share?

■ Data model info G and { Di } for both sides
■ Dynamic/static nature of layout on both sides
■ Send/Receive message schedules, if they can

be computed

19

Synchronous Data Transfer

● Data is transferred when both sides
indicate they are ready
■ One side does a send(), the other a receive()

● Before transfer, users must describe G, {
Di }, and the assignment of each Di to the
processors when registering a Port.

● The user provides the views, Vi, and
pointers to the allocated blocks of
memory, in the send() and receive() calls.

20
Send (C++)

Receive (C)
PAWS Code Example

// REGISTER WITH PAWS
Paws::Application app(argc, argv);

// CREATE PORT
Paws::Representation rep(wholeDom, myDom, myRank);
Paws::Port A("A", rep, Paws::PAWS_OUT, Paws::PAWS_DISTRIBUTED);
Paws::Port I("I", Paws::PAWS_OUT, Paws::PAWS_SCALAR);
app.addPort(&I); app.addPort(&A);

// ALLOCATE DATA AND CREATE VIEW
int* data = new int[mySize];
Paws::ViewArray<int> view(Paws::PAWS_COLUMN);
view.addViewBlock(data, myAllocDom, myViewDom);

// READY
app.ready();

// SEND DATA
int iter = 100;
I.send(&iter);
for (i = 0; i < iter; i++) {

A.send(view);
}

// CLEANUP
app.finalize();

/* REGISTER WITH PAWS */

paws_initialize(argc, argv);

/* CREATE PORTS */

int rep = paws_representation(wholeDom, myDom, myRank);

int B = paws_view_port("B", rep, PAWS_IN);

int J = paws_scalar_port("J", PAWS_IN);

/* ALLOCATE DATA AND CREATE VIEW */

int* data = (int*) malloc(mySize * sizeof(int));

int view = paws_view(PAWS_INTEGER, PAWS_ROW);

paws_add_view_block(view, data, myAllocDom, myViewDom);

/* READY */

paws_ready();

/* RECEIVE DATA */

paws_scalar_receive(J, iter, PAWS_INTEGER, 1);

for (i = 0; i < iter; i++) {

paws_view_receive(B, view);

}

/* CLEANUP */

paws_finalize();

21

Dynamically Resizing Data

● What if one side decided to resize or repartition?
■ The other side must find out about new size or

distribution of the other side
■ A new message schedule must be calculated
■ Memory may have to be reallocated

● PAWS provides an interface that:
■ Lets the user find out the new global domain G and

subdomains { Di } for the other side of the connection
■ Lets the user reallocate their data if it is necessary
■ Supports resize events from either side of the

connection

22

Resize Code Example

Application app(argc, argv);

// CREATE EMPTY REP AND VIEW
Representation rep(myRank);
Port A("A", rep, PAWS_OUT, PAWS_DISTRIBUTED);
ViewArray<int> view(PAWS_COLUMN);

app.ready();

// RESIZE DATA ON EVERY SEND
for (i = 0; i < iter; i++) {

int* data = new int[newMySize];
rep.update(newWholeDom, newMyDom);
view.update(data, newMyAllocDom, newMyViewDom);
A.resize(rep);
A.send(view);

}
app.finalize();

Application app(argc, argv);

// CREATE EMPTY REP AND VIEW
Representation rep(myRank);
Port B("B", rep, PAWS_IN, PAWS_DISTRIBUTED);
ViewArray<int> view(PAWS_COLUMN);

app.ready();

// WAIT FOR SIZE ON EVERY RECEIVE
for (i = 0; i < iter; i++)

B.resizeWait();
newWholeDom = B.domain();
newMyDom = redistribute(newWholeDom, rank);
int* data = new int[newMySize];
rep.update(newWholeDom, newMyDom);
view.update(data, newMyAllocDom, newMyViewDom);
B.update(rep);
B.receive(view);

}
app.finalize();

Send Receive

23

Preliminary Results

Sync send/receive

PAWS Timing Comparison, 128 X 128 X 128 data, 100 iterations

of processors (send:receive)

Ti
m

e(
se

c)

24

Future Directions

● Asynchronous data transfer
■ get(), unlock(), lock(), wait(), check()

● MPI 2 Communications
● More parallel data structures

■ Particles, unstructured, trees, etc.
● Better scripting interface
● Common Component Architecture (CCA)

style framework

